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Abstract
We study how well we can answer the question ‘Is the given quantum state
equal to a certain maximally entangled state?’ using LOCC, in the context of
hypothesis testing. Under several locality and invariance conditions, optimal
tests will be derived for several special cases by using basic theory of group
representations. Some optimal tests are realized by performing quantum
teleportation and checking whether the state is teleported. We will also give
a finite process for realizing some optimal tests. The performance of the tests
will be numerically compared.

PACS numbers: 03.65.Wj, 03.65.Ud, 02.20.−a
Mathematics Subject Classification: 81P15, 94A15

1. Introduction

Entanglement plays an important role in quantum information [2, 3, 6, 21]. An experimental
system makes use of a certain maximally entangled state

∣∣φ0
AB

〉
for the realization of quantum

information processing. However, a state generated as a maximally entangled state is not
necessarily a true maximally entangled state because the entanglement is easily corrupted by
interaction with the environment. Hence, it is important to consider how well we can answer
the question ‘Is the state equal to

∣∣φ0
AB

〉
?’ using quantum measurement with two outcomes

(T0, T1) corresponding to (yes, no).
For practical use, it is natural to restrict our measurements to local operation and classical

communications (LOCC) because some LOCC are easily implemented. Since the result of
the LOCC measurement is probabilistic and the error of incorrect answers is inevitable, it is
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important to consider an optimization problem of the measurement. As a framework of this
argument, hypothesis testing is appropriate [13]. We consider two hypotheses

H0 : the state is
∣∣φ0

AB

〉
versus H1 : the state is not

∣∣φ0
AB

〉
.

Since H0 is an accumulation point of H1, the probability of the correct answer ‘H0 is true’
when H0 is really true is almost equal to the probability of the incorrect answer ‘H0 is true’
when the state is close to

∣∣φ0
AB

〉
but different. In the hypothesis testing, considering the two

errors:

(i) to answer ‘H1 is true’ though H0 is really true,
(ii) to answer ‘H0 is true’ though H1 is really true,

we minimize the probability of (ii) with the probability of (i) kept small. See section 2 for
details.

There are similar studies based on entanglement witness; a physical observable which
gives minus outputs for a set of entangled inputs [18, 24]. The concept of entanglement
witness is widely adopted, and there are many extensive arguments, especially, by making
use of group symmetry. See, for example, theoretical works [20, 9, 5] and experiments [1].
However, in their arguments, analysis of statistical error is not sufficient. Hence it is worth
considering this problem in the style of statistical hypothesis testing [19]. Though there have
been studies of quantum hypothesis testing [15, 17, 16, 25, 10, 11, 13], there have not been
enough arguments for testing entanglement.

In this paper, we give an approach to the hypothesis testing whether the state is
∣∣φ0

AB

〉
using

LOCC measurement between two parties and independent samples. We will derive optimal
LOCC tests under some group invariance. The first case we consider is testing one sample of
a pair of d-dimensional systems using LOCC between two parties. As a physical meaning, the
optimal test is equivalent to optimal teleportation using a given state partially entangled, and
the error probability is the same as the fidelity of the input and the output of the teleportation. It
is also found that the test is equivalent to the extreme points of LOCC measurement described
by Virmani and Plenio [27] and the entanglement witness given in [5]. Next, the result is
generalized for the n-sample case. We derive an optimal test which is invariant by SU(dn),
and its asymptotic behaviour (n → ∞). In the asymptotic sense, the optimal LOCC test has
the same performance as the optimal test without LOCC restriction. Next, we present the
main result of this paper: for d = n = 2, the optimal test using LOCC between parties and
independent samples, with SU(2)-invariance and some additional conditions or requirements.
Since these tests are characterized by invariant measure, it contains continuous operations.
However, in order to implement it, they need their construction with finite basis. Then, we
show how to construct the optimal measurement with finite basis, for experimental realization.
Finally, we consider an optimal test using non-local measurement between samples with
SU(2) × SU(2)-invariance. This test is equivalent to the entanglement swapping.

This paper is organized as follows. In section 2, a general formulation of hypothesis
testing is introduced. In section 3, we state problems treated in this paper. In section 4,
we consider a problem to test entanglement based on a single sample pair, and we derive an
optimal test T u. Moreover, we consider a case where there are n-independent pairs of samples
to test entanglement. As a direct consequence of the previous section, we derive an optimal
LOCC test T U . It is also shown that this test has the same performance as the optimal test
without LOCC restriction in an asymptotic sense. In section 5, an optimal test T V is derived
under an LOCC condition between AB-parties and between samples. In section 6, an optimal
test T W is also derived under another condition which is less restrictive as for locality. In
section 7, we discretize the test derived in section 5 using representation of finite groups. In
section 8, we compare the performance of these tests for n = 2.
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2. Hypothesis testing

The main subject of this paper is to test whether a given state is

H0 : the maximally entangled state
∣∣φ0

AB

〉
or H1 : any other state

using LOCC. To setup the hypothesis testing formally, we first consider the hypotheses H0 and
H1 generally consisting of many elements. The hypothesis testing is an optimization problem
with respect to the error probability of a measurement with two outcomes corresponding to
the two hypotheses. As described later, there are two error probabilities, and one of them will
be minimized with the other kept at a given small level.

Let H be a finite-dimensional Hilbert space which describes a physical system of interest.
We denote the set of linear operators (matrices) on H (of density matrices on H) by L(H)

and S(H), respectively. In hypothesis testing, we assume two hypotheses the null hypothesis
H0 and the alternative hypothesis H1, and choose two non-empty subsets S0 and S1 of S(H)

such that S0 ∩ S1 = ∅, which correspond to our hypotheses. Suppose that the given state
ρ(∈ S(H)) of the system is unknown and that ρ ∈ S0 or ρ ∈ S1. We test

H0 : ρ ∈ S0 versus H1 : ρ ∈ S1 (1)

by a measurement with two outcomes T = (T0, T1): if the outcome Ti is obtained, then we
support the hypothesis Hi . However, the purpose of hypothesis testing is rejecting the null
hypothesis H0 and accepting H1 with a given confidence level. Hence, we make decision
only when the outcome T1 is observed, and we reserve our decision when the outcome T0

is observed. For simplicity, the test, or the measurement, T is often described by T0. In
the hypothesis testing, there are two kinds of errors: type 1 error is an event such that H1 is
accepted though H0 is true. Type 2 error is an event such that H0 is accepted though H1 is
true. Hence the type 1 error probability α(T , ρ) and the type 2 error probability β(T , ρ) are
given by

α(T , ρ) = Tr(ρT1)(ρ ∈ S0), β(T , ρ) = Tr(ρT0)(ρ ∈ S1).

A test T is said to be level-α when α(T , ρ) � α for any ρ ∈ S0 because α expresses the
confidence level of our decision. A quantity 1 − β(T , ρ) is called power. In our main
problem, we will consider level-zero tests only.

The main problem of hypothesis testing is to maximize the power, or equivalently, to
minimize the type 2 error probability, of the test T of level-α. A test T of level-α is said to be
the most powerful (MP) level-α at ρ ∈ S1 if β(T , ρ) � β(T ′, ρ) for any level-α test T ′. A
test T of level-α is said to be uniformly most powerful (UMP) level-α if T is MP level-α for
any ρ ∈ S1. The UMP test is regarded as the best test. However, except for some examples,
there is no UMP test because the uniformness is too strict.

In mathematical statistics, it is too difficult to solve problems when both S0 and S1 have
plural elements, except for some special cases, for example, the classical bioequivalence
problem [4]. Hence, it is natural to consider the case where

S0 := {〈
φ0

AB

∣∣ρ∣∣φ0
AB

〉
� c

}
, S1 := {〈

φ0
AB

∣∣ρ∣∣φ0
AB

〉
> c

}
,

or

S0 := {
ρ �= ∣∣φ0

AB

〉〈
φ0

AB

∣∣}, S1 := {
ρ = ∣∣φ0

AB

〉〈
φ0

AB

∣∣}.
However, it is also too difficult to treat the above case. Hence, we consider the case
S0 := {∣∣φ0

AB

〉〈
φ0

AB

∣∣} in this paper.
If any ρ ∈ S0 ∪ S1 is invariant by an action of a group, e.g., transposition of the order

of independent samples, we can without loss of generality restrict attention to tests exhibiting
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the same invariance, because the error probabilities are invariant. We may also require
that T0 should be invariant by a group action leaving S0 invariant to simplify the problem
mathematically. In experiments of entanglement, only LOCC can be used, so it is required
that the test is realized by LOCC.

There is a trade-off between requirement and power of a test; if there are two requirements
C1 and C2 for a test and if C1 is weaker than C2, then the optimal test for C1 is more powerful
than that for C2. If C1 and C2 are unitary-invariance conditions, arguments for C2 tend to
be mathematically easier. If they are locality conditions, arguments for C2 tend to be more
difficult. In the next section, we will introduce some different conditions.

3. Problems treated in this paper

Suppose that n-independent samples are provided, that is, the state is given in the form

ρ = σ⊗n = σ ⊗ · · · ⊗ σ︸ ︷︷ ︸
n

(2)

for an unknown density σ of a single sample. We test the following hypothesis with level
zero:

H0 : σ = ∣∣φ0
AB

〉〈
φ0

AB

∣∣ versus H1 : σ �= ∣∣φ0
AB

〉〈
φ0

AB

∣∣. (3)

Here,

∣∣φ0
AB

〉 = 1√
d

d−1∑
i=0

|i〉A ⊗ |i〉B

is a vector of a maximally entangled pair on two d-dimensional parties A and B spanned by
|0〉A, |1〉A, . . . , |d − 1〉A and |0〉B, |1〉B, . . . , |d − 1〉B , respectively. We refer to {|i〉A} and
{|i〉B} as the standard basis.

Since the state is invariant by transposing the order of independent samples, we can
without loss of generality impose that the tests for each case should be invariant by the same
transposition. We additionally impose three types of basic conditions on tests, that is, level
zero, locality and unitary invariance. Among various level-α conditions, we adopt α = 0
because it is the most fundamental and the optimal tests that have analytically simple forms.
We use only AB-local tests, i.e., LOCC between A and B. In some cases, we also require
that tests should be samplewise local, i.e., LOCC between independent samples. Unitary
invariance of the measurement is imposed for the symmetry of σ⊗n or

(∣∣φ0
AB

〉〈
φ0

AB

∣∣)⊗n
.

First, we will make an LOCC test for a product system of two d-dimensional systems.
Then, this will be generalized to the case of n-independent pairs of the d × d systems. For the
n-sample case, a samplewise locality condition can be considered. Without the samplewise
locality, we will derive optimal tests for any d and n. With the samplewise locality, however,
the problem is so difficult that we will derive optimal tests only for d = n = 2.

We list three sets of conditions under which we will find best tests in sections 4–6. Unless
otherwise mentioned, AB-locality is always imposed.

Remark 1. One may think that it is impossible to prepare the plural samples of the given
unknown state σ when the state is easily corrupted by interaction. However, the density σ

represents the ensemble of states generated by a specific state generator. Hence, as long as
each sample is generated by this generator, it can be regarded as the state σ .
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3.1. U-invariance for n-samples

As an action of SU(dn), U-action UAB is defined as

UAB(g) = UA(g) ⊗ UB(g) for g ∈ SU(dn), (4)

where UA and UB are the natural representations of SU(dn) on the dn-dimensional subsystems
A and B, respectively, and X is the contragredient of X with respect to the standard basis, i.e.,
(X)i,j = Xj,i

5. The state
∣∣φ0

AB

〉〈
φ0

AB

∣∣ is U-invariant in the sense UAB(g)
∣∣φ0

AB

〉〈
φ0

AB

∣∣U †
AB(g) =∣∣φ0

AB

〉〈
φ0

AB

∣∣. A test T = (T0, T1) is said to be U-invariant if T0 = U
†
AB(g)T0UAB(g). Under

the AB-locality condition, a UMP U-invariant test T U will be derived. Moreover, it will be
shown that, asymptotically, T U has the same performance as a test which is UMP without the
AB-locality or the U-invariance (section 4).

3.2. Samplewise locality and V -invariance for two samples

Let d = n = 2. We require samplewise locality, that is, in this case, a test T is realized by
LOCC between the first and the second samples. The V-action of SU(2) is defined as

VA1B1A2B2 := UA1 ⊗ UB1 ⊗ UA2 ⊗ UB2 . (5)

In the same sense as the U -invariance,
(∣∣φ0

AB

〉〈
φ0

AB

∣∣)⊗2
is V -invariant. Moreover, V leaves

the set S1 invariant while U and W (defined below) do not. A test is said to be V -invariant if
V

†
A1B1A2B2

T0VA1B1A2B2 is invariant. The V -invariance is not so strict as the V -invariance that
its mathematical analysis is difficult. Hence we also consider AB-invariance. This invariance
by AB-transpositions is generated by

|i〉A1 |j 〉B1 |k〉A2 |l〉B2 �→ (−1)i+j+k+l|1 − j 〉A1 |1 − i〉B1 |1 − l〉A2 |1 − k〉B2 . (6)

A UMP V -invariant test T V will be derived under the samplewise locality, the AB-invariance
and termwise AB-covariance defined in definition 1. Moreover, it will be shown that in a
subset of density operators, T V is UMP without the termwise AB-covariance (section 5).

3.3. W -invariance for two samples

Let d = n = 2 again. The W-action of the direct product SU(2) × SU(2) is defined as

WA1B1A2B2(g, h) := UA1(g) ⊗ UB1(g) ⊗ UA2(h) ⊗ UB2(h) (7)

for g, h ∈ SU(d).
∣∣φ0

AB

〉〈
φ0

AB

∣∣ is again W -invariant, and a test T = (T0, T1) is said to

be W -invariant if W
†
A1B1A2B2

T0WA1B1A2B2 is invariant. The W -invariance is weaker than the
U-invariance but is stronger than the V -invariance. In a subset of density operators, a UMP
W -invariant test T W is obtained (section 6).

The U-invariance is the most strict condition and the V -invariance is the weakest as the
SU(2) action for d = n = 2. As for the locality conditions, the samplewise locality in
addition to the AB-locality treated in the V -invariance case is the most strict. As is shown in
section 7 with a graph, the power of T W is the highest, that of TU is the second and that of T V

is the lowest in a neighbourhood of H0. Hence it is recommended to use T W rather than T U

when one can use non-local measurement between the two independent samples. However,
asymptotically, T U is optimal. See section 4.3.

5 In fact, when we consider the inner product 〉x ⊗ y|φ0
AB 〉 = 1√

d

∑d−1
i=0 xiyi , the element y of the system B behaves

as the elements of dual space of the system A. Hence, we call UB the contragredient.
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4. U-invariance

In this section, as the first step, we consider the case of n = 1. As the next step, we generalize
the result to an arbitrary n.

4.1. One-sample case

Let n = 1. Virmani and Plenio [27] have derived extreme points of AB-local measurements
using positive partial transpose (PPT). We will derive the same measurement T u = {

T u
0 , T u

1

}
as a UMP U-invariant test using property of separable measurement.

Theorem 1. For n = 1, a UMP AB-local and U-invariant test T u
0 of level zero is given as

follows:

T u
0 = ∣∣φ0

AB

〉〈
φ0

AB

∣∣ +
1

d + 1

(
I − ∣∣φ0

AB

〉〈
φ0

AB

∣∣). (8)

The type 2 error probability is

β
(
T u

0 , ρ
) = β(T u, σ ) = dθ + 1

d + 1
, (9)

where θ = 〈
φ0

AB

∣∣σ ∣∣φ0
AB

〉
.

The formula (9) shows that the power of the test goes to zero as the state goes to
∣∣φ0

AB

〉
.

Hence, it is difficult to reject H0 even if H1 is true. The case when σ is in a neighbourhood of
H0 will be highlighted in (14) and (15) in the next subsection. Other optimal tests derived in
the later sections have the same property.

Remark 2. The protocol for the test T u is implemented using the teleportation. Suppose that
Alice has a state |ψ〉 in another system A′. She measures her total system A ⊗ A′ by the
Bell basis and then she lets Bob know the result. The teleportation is completed when Bob
rotates the system according to Alice’s information. The imperfectness causes some error
in the teleportation, and the fidelity |〈ψ |ψ ′〉|2 of the teleported state |ψ ′〉 is evaluated by the
measurement {|ψ〉〈ψ |, I −|ψ〉〈ψ |}. This process is equivalent to the test T u with A′ ignored,
and the fidelity is the same as β

(
T u

0 , ρ
)
.

Remark 3. Virmani and Plenio [27] have proved that T u is an extreme point of AB-local
measurements under invariance conditions. Their work is related to our problem since an
optimal test is always an extreme point though the converse is not always true. In the case
n = 1, they found that there are two extreme points. As a test, however, it is obvious that the
measurement other than T u is not optimum as a test for the hypothesis. Hence we can also
conclude that T u is optimum based on their approach.

D’Ariano et al [5] have also considered the same measurement as T u, as an entanglement
witness. However, it is different from the hypothesis testing because the optimization of the
error probability was not considered.

Proof of theorem 1. First, we show that T u
0 can be written as a classical mixture of AB-local

projective measurements, i.e.,

T u
0 =

∫
g∈SU(d)

(UA(g) ⊗ UB(g))†

(
d∑

i=1

|i〉A|i〉B
〈
i
∣∣
A

〈
i
∣∣
B

)
(UA(g) ⊗ UB(g))µ(dg), (10)



LOCC-detection of a maximally entangled state 14433

where µ(·) is the Haar measure on SU(d). (Its full measure is 1.) From the invariance, we
can easily see that the LHS has the form a

∣∣φ0
AB

〉〈
φ0

AB

∣∣ + b
(
I − ∣∣φ0

AB

〉〈
φ0

AB

∣∣). Since

Tr(LHS of (10)) = d and
〈
φ0

AB

∣∣(LHS of (10))
∣∣φ0

AB

〉 = 1, (11)

we obtain (10).
Then, the test

(UA(g) ⊗ UB(g))†

(
d∑

i=1

|i〉A|i〉B〈i|A〈i|B
)

(UA(g) ⊗ UB(g))

=
d∑

i=1

UA(g)†|i〉AUB(g)†|i〉B〈i|AUA(g)〈i|BUB(g)

can be realized by the local measurements based on the bases {UA(g)†|i〉A}di=1 and
{UB(g)†|i〉B}di=1. Hence, the test T u is realized by measuring T = {T0, T1} by randomly
choosing g subject to the Haar measure.

Next, we prove its optimality. A U-invariant test T0 is written in the following form:

T0 = a
∣∣φ0

AB

〉〈
φ0

AB

∣∣ + b(I − ∣∣φ0
AB

〉〈
φ0

AB

∣∣),
where 0 � a � 1 and 0 � b � 1. Since

〈
φ0

AB

∣∣T0

∣∣φ0
AB

〉 = a, T0 is level zero if and only if
a = 1. Hence, it is sufficient to show that any LOCC level-zero U-invariant test T satisfies
b � (d + 1)−1. Further, since a = 1, the condition b � (d + 1)−1 is equivalent with the
condition

Tr T0 � d. (12)

Now, we will show (12). Since an LOCC measurement is separable, T0 should be
separable between A and B, that is,

T0 =
∑

i

ciMA,i ⊗ MB,i,

where 0 � ci � 1 and where MA,i and MB,i are rank-1 projections on A and B, respectively.
Since Tr(T0) = a +b(d2 −1) = 1 +b(d2 −1) = ∑

i ci , our problem is to minimize
∑

i ci . Let
Fi = Tr

(
MA,iM

T
B,i

)
, where XT is the transpose of X with respect to the standard basis. Then,

1 = 〈
φ0

AB

∣∣T0

∣∣φ0
AB

〉 = ∑
i

ci

〈
φ0

AB

∣∣MA,i ⊗ MB,i

∣∣φ0
AB

〉 = ∑
i ci Tr

(
MA,iM

T
B,i

)
d

=
∑

i ciFi

d
.

Since 0 � Fi � 1, we have

Tr(T0) =
∑

i

ci �
∑

i

ciFi = d. (13)

�

The unconditionally UMP level-zero test T
g

0 is T
g

0 = ∣∣φ0
AB

〉〈
φ0

AB

∣∣, and its type 2 error is
β
(
T

g

0 , σ
) = θ . The AB-locality is reflected in the difference (1 − θ)/(d + 1) of type 2 errors

of T u
0 and T

g

0 .

Remark 4. In order to prove the optimality, we focused on the trace of T0. This trace method
is very powerful for treating the separable POVM element detecting a given entangled state
with probability one. This method was invented in this research for the first time, and was
applied to other papers [26, 14].
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4.2. n-sample case

Theorem 1 is generalized to the case of an arbitrary n as follows.

Theorem 2. For any n � 1, a UMP AB-local and U-invariant test of level zero is

T U
0 = (∣∣φ0

AB

〉〈
φ0

AB

∣∣)⊗n
+

1

dn + 1

(
I − (∣∣φ0

AB

〉〈
φ0

AB

∣∣)⊗n)
.

The type 2 error probability is

β
(
T U

0 , σ⊗n
) = dnθn + 1

dn + 1
,

where θ = 〈
φ0

AB

∣∣σ ∣∣φ0
AB

〉
.

Proof. The proof of theorem 1 is directly applied by replacing the space A in theorem 1 with
A1 ⊗ · · · ⊗ An,B with B1 ⊗ · · · ⊗ Bn, the dimension d with dn and the group SU(d) with
SU(dn). �

4.3. Asymptotic property

For comparison, let us consider other tests:

T
u,n

0 = (
T u

0

)⊗n
and T G

0 = (
T

g

0

)⊗n = (∣∣φ0
AB

〉〈
φ0

AB

∣∣)⊗n
.

Note that they are both level zero since T u
0 and T

g

0 are level zero. We also note that T G
0 is

UMP level zero without any condition. The type 2 error probabilities are

β
(
T

u,n
0 , σ⊗n

) =
(

dθ + 1

d + 1

)n

, β
(
T G

0 , σ⊗n
) = θn.

Hence we have

β
(
T G

0 , σ⊗n
)

< β
(
T U

0 , σ⊗n
)

< β
(
T

u,n
0 , σ⊗n

)
(n � 2).

On the other hand, the asymptotic behaviour of β
(
T U

0 , σ⊗n
)

is

lim
n→∞

β
(
T U

0 , σ⊗n
)

θn
= 1 if θ � 1/d, (14)

lim
n→∞

β
(
T U

0 , σ⊗n
)

1/dn
= 1 if θ < 1/d. (15)

It means that if θ = 〈
φ0

AB

∣∣σ ∣∣φ0
AB

〉
� 1/d, then T U

0 and T G
0 have the same asymptotic

performance not only for the exponent but also for the coefficient of the type 2 error
probabilities. In this sense, the restriction of AB-locality and U-invariance does not reduce
the performance of the UMP level-zero test T G

0 .

5. Samplewise locality, V -invariance for n = d = 2

We consider the case n = d = 2. First, we derive a UMP test T V under the conditions of
samplewise locality, V -invariance, AB-invariance and the termwise AB-covariance (defined
in definition 1). We then prove that this test is also UMP without the termwise AB-covariance
for a subset S ′ of density operators.

Before defining termwise covariance, we note that if T0 is AB-local and samplewise-local
then T0 is AB-separable and samplewise separable, that is,

T0 =
∑

i

piMA1,i ⊗ MB1,i ⊗ MA2,i ⊗ MB2,i ,

where MX is a rank-1 projection on the system X.
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Definition 1. The test T0 is said to be termwise AB-covariant if

Tr
(
MA1,iM

T
B1,i

) = 1 and Tr
(
MA2,iM

T
B2,i

) = 1

holds.

The meaning of the termwise AB-covariance will be clarified by Hayashi [12]. Define
∣∣φ1

AB

〉
,∣∣φ2

AB

〉
and

∣∣φ3
AB

〉
as follows:∣∣φ1
AB

〉
:=

√−1√
2

(|0〉A ⊗ |1〉B + |1〉A ⊗ |0〉B),∣∣φ2
AB

〉
:= 1√

2
(−|0〉A ⊗ |1〉B + |1〉A ⊗ |0〉B),∣∣φ3

AB

〉
:=

√−1√
2

(|0〉A ⊗ |0〉B − |1〉A ⊗ |1〉B).

In this section, we frequently use the matrix expression xij = 〈
φi

AB

∣∣σ ∣∣φj

AB

〉
for the sake of

notational convenience.

Remark 5. There is a two-to-one group homomorphism of SU(2) onto SO(3) as the three-
dimensional subrepresentation of UA ⊗ UB . It irreducibly acts on span

{∣∣φ1
AB

〉
,
∣∣φ2

AB

〉
,
∣∣φ3

AB

〉}
.

Now, we regard the tensor product space
(
span

{∣∣φ0
AB

〉
,
∣∣φ1

AB

〉
,
∣∣φ2

AB

〉
,
∣∣φ3

AB

〉})⊗2
as the spaceM

of 4 × 4 matrices spanned by the basis eij := ∣∣φi
AB

〉
1

∣∣φj

AB

〉
2. SU(2) acts on M by VA1B1A2B2 as

follows:

[
1 0
0 S

]
e00 e01 e02 e03

e10 e11 e12 e13

e20 e21 e22 e23

e30 e31 e32 e33


[

1 0
0 ST

]
(16)

for S ∈ SO(3). Let K±
i , L±

i be i-dimensional subspaces of M defined as follows:

K+
6 : The space of all 3 × 3 symmetric matrices spanned by eij (1 � i, j � 3),

K+
1 : the one-dimensional subspace of K+

6 spanned by the 3 × 3 identity matrix,
K+

3 : the three-dimensional subspace of K+
6 spanned by eij + eji(i �= j),

K+
2 : the two-dimensional space spanned by

e11 + ωe22 + ω2e33 and e11 + ω2e22 + ωe33,

where ω is a solution to ω2 + ω + 1 = 0,
K+

5 := K+
6 − K+

1 = K+
3 + K+

2 ,
K−

3 : the space of all 3 × 3 alternating matrices spanned by eij (1 � i, j � 3),
M+

10: the ten-dimensional space of all 4 × 4 symmetric matrices,
M−

6 : the six-dimensional space of all 4 × 4 alternating matrices,

L+
1: the one-dimensional space spanned by e00 = ∣∣φ0

AB

〉⊗2
,

L+
3 := M+

10 − K+
6 − L+

1 ,
L−

3 := M−
6 − K−

3 .

The V -action V = UA1 ⊗ UB1 ⊗ UA2 ⊗ UB2 is equivalent to UA1 ⊗ UB1 ⊗ UA2 ⊗ UB2 as group
representation. By the V -action (or, equivalently, by the SO(3) action of the form (16)), M is
decomposed into subspaces of irreducible representations as

M = K+
5 ⊕K−

3 ⊕ L+
3 ⊕ L−

3︸ ︷︷ ︸
equivalent

⊕K+
1 ⊕ L+

1︸ ︷︷ ︸
equivalent

. (17)

See [7, 8] for details. The decompositions into the three spaces K−
3 and L±

3 and into the two
spaces K+

1 and L+
1 in (17) are not unique because they have the equivalent representations of

three dimension and one dimension, respectively.
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The AB-transposition simultaneously maps
∣∣φ0

AB

〉
i

to −∣∣φ0
AB

〉
i

for i = 1, 2, while it leaves
other

∣∣φi
AB

〉
i

invariant. Hence it acts on M as

M � X �→
(−1 0

0 I3

)
X

(−1 0
0 I3

)
(18)

where I3 is the three-dimensional identity matrix. Hence it makes −1-multiplication on L±
3

while K−
3 is left invariant. Transposition of the order of the independent samples corresponds

to the matrix transposition of M. Hence it makes −1-multiplication on K−
3 and L−

3 while L+
3 is

left invariant. Therefore, by the V -action with the two types of transposition, M is decomposed
as

M = K+
5 ⊕ K−

3 ⊕ L+
3 ⊕ L−

3 ⊕︸ ︷︷ ︸
not equivalent

K+
1 ⊕ L+

1︸ ︷︷ ︸
equivalent

.

By the W -action, M is decomposed as

M = L+
1 ⊕ L′

3 ⊕ L′′
3 ⊕ K9,

where L′
3 and L′′

3 are the three-dimensional spaces spanned by xi,0 and x0,j , respectively, and
K9 is the nine-dimensional space spanned by xi,j (1 � i, j � 3). Though L′

3 and L′′
3 have

the same dimension, this decomposition is unique because the first and the second element of
SU(2)×SU(2) independently act on L′

3 and L′′
3. The transposition of the order of independent

samples corresponds to transposing L′
3 and L′′

3. Hence the W -invariant test for σ⊗2 has the
same weight on L′

3 and L′′
3.

5.1. Termwise AB-covariance

We use the symbols K±
i and L±

i not only as the spaces but also as the projection operators.
Any operator X invariant by the V -action, the AB-transposition and the transposition of the
order of independent samples is of the form

X = w1K
+
5 + w2K

−
3 + w3L

+
3 + w4L

−
3 + J,

where 0 � wi � 1 and J is an operator on the two-dimensional space J2 := K+
1 ⊕ L+

1 . Each
weight wi and the form of N of the optimal test for

∣∣φ0
AB

〉
is obtained as follows.

Theorem 3. A UMP AB-local, samplewise local, V -invariant, AB-invariant and termwise
AB-covariant test of level zero is given as

T V
0 = 1

10K+
5 + 1

3L+
3 +

(∣∣φ0
AB

〉〈
φ0

AB

∣∣)⊗2
+ 1

6K−
3 + 1

3L−
3 . (19)

The type 2 error of T V
0 is

β
(
T V

0 , σ⊗2
) = vT Zv − 2

15 (Re(x12)
2 + Re(x23)

2 + Re(x31)
2) (20)

where

v =

x11 −1/2

x22 −1/2
x33 −1/2


 , Z = 1

15


6 7 7

7 6 7
7 7 6


 .

Proof of theorem 3. First, all the conditions of locality and invariance are checked by
calculating the weight for each projection of

T V
0 =

∫
g∈SU(2)

(
VA1B1A2B2(g)

)†
(	00 + 	01 + 	10 + 	11)

(
VA1B1A2B2(g)

)
µ(dg), (21)

where µ(·) is the Haar measure on SU(2) and where 	ij (i, j = 0, 1) is the projection on the
one-dimensional subspace spanned by
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|i〉A1 ⊗ |i〉B1 ⊗ |0〉A2 + (−1)j |1〉A2√
2

⊗ |0〉B2 + (−1)j |1〉B2√
2

(22)

(see also section 7.2 bellow).
Next, we show that the type 2 error of T V

0 is minimized. Any test satisfying all those
conditions is given in the form

T0 =
∑

i

qi

∫
g∈SU(2)

UA1(g)†|0〉A1〈0|A1UA1(g) ⊗ UB1(g)T |0〉B1〈0|B1UB1(g)

⊗ UA2(g)T
∣∣ψFi

〉
A2

〈
ψFi

∣∣
A2

UA2(g) ⊗ UB2(g)T
∣∣ψFi

〉
B2

〈
ψFi

∣∣
B2

UB2(g)µ(dg)

where qi � 0 and

|ψF 〉X =
√

F |0〉X +
√

1 − F |1〉X√
2

(0 � F � 1).

For the invariance conditions, T0 can be written as

T0 = w1K
+
5 + w2L

+
3 + J + w3K

−
3 + w4L

−
3 (0 � wi � 1).

To satisfy the level-zero condition, the weight of J for L+
1 should be one. To minimize the

type 2 error, the weight of J for K+
1 should be zero. Hence T0 should be

T0 = w1K
+
5 + w2L

+
3 + L+

1 + w3K
−
3 + w4L

−
3 .

Define

m(X) = 〈0|A1〈0|B1〈ψF |A2〈ψF |B2X|0〉A1 |0〉B1 |ψF 〉A2 |ψF 〉B2 .

By direct calculation, m(X) is given as follows:

m
(
K+

5

) = F 2 − F + 1

6
, m

(
L+

3

) = F

2
, m

(
K+

1

) = (2F − 1)2

12
, m

(
L+

1

) = 1

4
,

m
(
K−

3

) = F(1 − F)

2
, m

(
L−

3

) = 1 − F

2
.

Moreover,

Tr
(
σ⊗2K+

5

) = 1

3
(x11 + x22 + x33)

2 +
1

6

∑
1�i<j�3

(xii + xjj )
2

− 4

3

∑
1�i<j�3

(Im xij )
2 +

1

3

∑
1�i<j�3

|xij |2, (23)

Tr
(
σ⊗2L+

3

) =
3∑

i=1

(x00xii + |x0i |2), (24)

Tr
(
σ⊗2K+

1

) = 1

3

∑
1�i,j�3

x2
ij , (25)

Tr
(
σ⊗2L+

1

) = x2
00, (26)

Tr
(
σ⊗2K−

3

) =
∑

1�i<j�3

xiixjj −
∑

1�i<j�3

|xij |2, (27)

Tr
(
σ⊗2L−

3

) =
3∑

i=1

(x00xii − |x0i |2). (28)
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Hence, the type 2 error probability is given by

β(T0, σ
⊗2) =

∑
i

qi

(
aF 2

i + bFi + c
)
, (29)

where

a = (x11 − x22)
2 + (x22 − x33)

2 + (x33 − x11)
2

15
+

2

5
((Re x12)

2 + (Re x23)
2 + (Re x31)

2),

b = −a +
(Im x01)

2 + (Im x02)
2 + (Im x03)

2

6
,

c = − (Im x01)
2 + (Im x02)

2 + (Im x03)
2

3
+

(Re x12)
2 + (Re x23)

2 + (Re x31)
2

15
+ vT

0 Z0v0,

and where

v0 =

x11 −1/2

x22 −1/2
x33 −1/2


 , Z0 = 1

30


4 3 3

3 4 3
3 3 4


 .

We minimize (29) under necessary conditions on
∑

i qi and
∑

i qiFi as follows. Since T0 is
level zero, we have

1

4

∑
i

qi = 〈
φ0

AB

∣∣⊗2
T0

∣∣φ0
AB

〉⊗2 = 1. (30)

We have ∑
i

qiFi = 2. (31)

Hence, the type 2 error probability (29) is minimized if
∑

i qiF
2
i is minimized under (30) and

(31). From Jensen’s inequality,

∑
i

qiF
2
i = 4

∑
i

qi

4
F 2

i � 4

(∑
i

qi

4
Fi

)2

= 1.

The equality holds if q1 = · · · = q4 = 1 and F1 = · · · = F4 = 1/2 so that the type 2 error
probability is uniformly minimized if T0 = T V

0 . Hence we obtain (19) and (20). �

5.2. Optimality without termwise AB-covariance

In this subsection, we discuss the optimality of T V under another conditions, removing the
termwise AB-locality. In this argument, we use PPT instead of separability of measurement.
PPT is a class of tests which strictly includes the set of separable/LOCC tests. Hence, a test
is best among LOCC if it is LOCC and is best among PPT. The set of PPT tests satisfies
some linear inequalities for weights on projections K±

i and L±
i . So T V is optimal in PPT if it

uniformly minimizes error probability under the condition of the linear inequalities.
We consider parameterized subsets of states as follows.

Definition 2. Let S(ϑ) be a set of density operators σ satisfying the following two conditions
for xij = 〈

φi
AB

∣∣σ ∣∣φj

AB

〉
:

θ = x00 = 〈
φ0

AB

∣∣σ ∣∣φ0
AB

〉
� ϑ,

and
1

2

∑
1�i<j�3

(xii − xjj )
2 + 3

∑
1�i<j�3

|xij |2 � 4
∑

1�i<j�3

(Im xij )
2, (32)
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or equivalently,

3 Tr
(
σ⊗2K+

1

)
� Tr(σ⊗2K−

3 ). (33)

This condition (32) is satisfied if

σ = (1 − p − q − r)
∣∣φ0

AB

〉〈
φ0

AB

∣∣ + p|φ1
AB〉〈φ1

AB

∣∣ + q|φ2
AB〉〈φ2

AB

∣∣ + r|φ3
AB〉〈φ3

AB

∣∣.
Indeed, it holds that

3 Tr
(
σ⊗2K+

1

) − Tr(σ⊗2K−
3 ) = (p − q)2 + (q − r)2(r − p)2

2
� 0.

Theorem 4. There is θ0 < 1 such that T V
0 is UMP AB-local, samplewise local, V-invariant,

weakly AB-invariant with level zero in S(θ0).

Proof. In this proof, we deal with the alternative side T1 = I −T0 of the measurement because
it makes the calculation simple; T1 has the zero weight on L+

1 . If T1 satisfies all the locality
and invariance conditions and if it is level zero, then T1 is given by

T1 = w1K
+
5 + w2L

+
3 + w3K

+
1 + w4K

+
3 + w5L

−
3 .

The power of the test is given as

Tr
(
σ⊗2T1

) = w1 Tr
(
σ⊗2K+

5

)
+ w2 Tr

(
σ⊗2L+

3

)
+ w3 Tr

(
σ⊗2K+

1

)
+ w4 Tr(σ⊗2K−

3 ) + w5 Tr(σ⊗2L−
3 ).

Lemma 1 shows that, if 1 − θ is small, the power is maximized if

5w1 + 3w2, w2, w3, 5w1 + 3w2 + w3 + 3w4 + 3w5, and w5 (34)

are simultaneously maximized. From lemmas 2–4 in the appendix, w1, . . . , w5 should satisfy

10w1 + 6w2 − w3

12
� 1, (35)

w3 + 2(w4 + w5)

4
� 1, (36)

w2 = w5, (37)
3

4
(w2 + w5) � 1. (38)

Therefore,

max{5w1 + 3w2 | (35), 0 � wi � 1} = 13
2 ,

max{w2 | (37), (38), 0 � wi � 1} = 2
3 ,

max{w3 | (35), (36), 0 � wi � 1} = 1,

max{5w1 + 3w2 + w3 + 3w4 + 3w5 | 0 � wi � 1} = 12,

max{w5 | (37), (38), 0 � wi � 1} = 2
3 ,

and we have (19) as a solution to the linear maximization problem. �
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6. W -invariance for n = d = 2

Let d = n = 2. In this section, we test the following hypothesis with level zero:

H0 : σ = ∣∣φ0
AB

〉〈
φ0

AB

∣∣ versus H1 : 1/4 �
〈
φ0

AB

∣∣σ ∣∣φ0
AB

〉
< 1. (39)

In other words, we consider the case where the set of possible states is
S ′ = {

σ | 〈φ0
AB

∣∣σ ∣∣φ0
AB

〉
� 1/4

}
.

Theorem 5. A UMP AB-local, and W -invariant for (39) of level zero is given as follows:

T W
0 = ∣∣φ0

AB

〉〈
φ0

AB

∣∣⊗2
+ 1

3

(
I − ∣∣φ0

AB

〉〈
φ0

AB

∣∣)⊗2
. (40)

The type 2 error probability of T W
0 is

β
(
T W

0 , σ⊗2
) = θ2 +

(1 − θ)2

3
. (41)

Remark 6. The test T W is implemented, by using the entanglement swapping from A1 ⊗ B1

and A2 ⊗ B2 to B1 ⊗ B2; measuring A1 ⊗ A2 in the Bell basis can create entanglement in
B1 ⊗ B2. The success rate, or the fidelity to the maximally entangled state, of the swapping is
equivalent to the type 2 error probability β

(
T W

0 , σ⊗2
)
.

Proof of theorem 5. T0 is W -invariant (see remark 5). It is also AB-local because

T W
0 =

∫
g,h∈SU(2)

(WA1B1A2B2(g, h))†
(∣∣φ0

12

〉
A

∣∣φ0
12

〉
B

〈
φ0

12

∣∣
A

〈
φ0

12

∣∣
B

+
∣∣�+

12

〉
A

∣∣�+
12

〉
B

〈
�+

12

∣∣
A

〈
�+

12

∣∣
B

+
∣∣�−

12

〉
A

∣∣�−
12

〉
B

〈
�−

12

∣∣
A

〈
�−

12

∣∣
B

+ |�−
12〉A|�−

12〉B〈�−
12|A〈�−

12|B
)
(WA1B1A2B2(g, h))dµ(g, h),

where µ(·, ·) is the Haar measure on SU(2) × SU(2) and where∣∣�±
12

〉
X

= |0〉X1 |0〉X2 ± |1〉X1 |1〉X2√
2

,
∣∣�±

12

〉
X

= |0〉X1 |1〉X2 ± |1〉X1 |0〉X2√
2

(X = A,B).

By remark 5, a W -invariant test T0 is of the form

T0 = w1
(
K+

5 + K−
3 + K+

1

)
+ w2

(
L+

3 + L−
3

)
+ w3

∣∣φ0
AB

〉〈
φ0

AB

∣∣⊗2
.

By the level-zero condition, w3 = 1. If σ ∈ S ′ then

9−1 Tr
(
σ⊗2

(
K+

5 + K+
1 + K−

3

))
� 6−1 Tr

(
σ⊗2(L+

3 + L−
3 )
)

(42)

because

6−1 Tr
(
σ⊗2

(
L+

3 + L−
3

)) − 9−1 Tr
(
σ⊗2

(
K+

5 + K+
1 + K−

3

))
= 3−1

(
x00 − x11 + x22 + x33

3

)
(x11 + x22 + x33).

As theorem 4, the type 2 error probability is uniformly minimized if 3w1 + 2w2 and w2 are
simultaneously minimized (see lemma 5). From (13), we have

min{9w1 + 6w2 | AB-locality} = 3.

Therefore w1 = 1/3 and w2 = w4 = 0 are the solutions to the minimization problem, and the
theorem is derived. �
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7. Discretization of measurements

We have expressed T u and T V as probabilistic mixtures of continuously many separable
operators labelled by SU(2)-elements. Such continuous expressions are simple and convenient
in a theoretical argument. A basic method to realize a SU -invariant measurement is to operate
the system as for an unitary element randomly chosen with respect to the Haar measure.
However, in this method, we need to prepare continuously many operations. Therefore, it is
worth noting that T u and T V are also expressed as mixtures of a few operators locally realized.

7.1. Discretization of T u

We rewrite T as

T u
0 = 2

3 (|0A0B〉〈0A0B | + |1A1B〉〈1A1B |)
+ 1

3 (|0A1B〉〈0A1B | + |1A0B〉〈1A0B | + |0A1B〉〈1A0B | + |1A0B〉〈0A1B |)
= 3−1(|0A0B〉〈0A0B | + |1A1B〉〈1A1B | + |DADB〉〈DADB |

+ |XAXB〉〈XAXB | + |RALB〉〈RALB | + |LARB〉〈LARB |),
where

|D〉 = |0〉 + |1〉√
2

, |X〉 = |0〉 − |1〉√
2

,

|R〉 = |0〉 +
√−1|1〉√

2
, |L〉 = |0〉 − √−1|1〉√

2
.

This means that one can realize T u by the two-values POVM T = {T0, T1} given in the form

T0 = |xAxB〉〈xAxB | + |yAyB〉〈yAyB |,
where the orthonormal pair (x, y) is chosen from {(0, 1), (D,X), (R,L)} completely at
random.

We also note that a finite subgroup O of SU(2) generated by(√−1 0
0 −√−1

)
and

1√
2

(
1 −1
1 1

)
transitively acts on {|xAxB〉 | x = 0, 1,D,X,R,L} by UAB(·). O is the octahedral group,
which is the (special) symmetry group of the octahedron and the cube. Therefore, one can
also realize T u by

T0 = |0A0B〉〈0A0B | + |1A1B〉〈1A1B |
after a transformation UAB(g) for randomly selected g ∈ O.

Remark 7. D’Ariano et al [5] have proposed a discretization of an entanglement witness: the
same measurement as T u. Their discretized measurement is also equivalent to ours. However,
their analysis is not enough in the sense of hypothesis testing.

7.2. Discretization of T V

The test T V is also expressed as a mixture of finite measurements as follows:

T V
0 = 1

24

∑
g∈O

(VA1B1A2B2(h
∗g))†


 ∑

0�i,j�1

	ij + τ12(	ij )

2


VA1B1A2B2(h

∗g), (43)
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where h∗ ∈ SU(2) is defined by

h∗ : cos

(
arccos

√
3/5

4

)
|0〉 + sin

(
arccos

√
3/5

4

)
|1〉 �→ |0〉

and where τ12(·) is the transposition of A1 ⊗ B1 and A2 ⊗ B2. Therefore, one can realize T V

as follows. First, transform by VA1B1A2B2(h
∗g) where g ∈ O is chosen completely at random.

Next, by probability 1/2, replace the sample numbering, that is, apply τ12. Next, measure the
subsystems by

A1 B1 A2 B2

{|0〉, |1〉} {|0〉, |1〉} {|D〉, |X〉} {|D〉, |X〉}
independently. The hypothesis H0 is accepted if A1 and B1 have the same measurement result
and A2 and B2 have the same one.

One can check (43) as follows. The subspaces K±
3 ,K+

2 ,K+
1 , L+

1 and L±
3 are irreducible

by the V -restriction O ⊂ SU(2), and, in particular, the three-dimensional actions of O for K+
3

and L+
3 are mutually inequivalent. and, by calculation,

Tr
(
K+

3 VA1B1A2B2(hx)
†	ijVA1B1A2B2(hx)

) = cos2(4x)

8
, (44)

Tr
(
K+

2 VA1B1A2B2(hx)
†	ijVA1B1A2B2(hx)

) = sin2(4x)

8
, (45)

where

SU(2) � hx : cos x|0〉 + sin x|1〉 �→ |0〉,
and hence (44) = (45) if x = (arccos

√
3/5)/4.

8. Discussion and conclusion

For d = n = 2, we have proposed five measurements T G, T u,2, T U, T V and T W as optimal
tests (for subsets of states, if necessary,) in the corresponding classes of tests, that is,

T G: the class of level-zero tests,
T u,2: the class of level-zero tests of the form T ⊗2

0 where T0 is AB-local U-invariant for each
sample,
T U : the class of AB-local U-invariant level-zero tests,
T V : the class of AB-local, samplewise local, V -invariant, weakly AB-invariant, termwise
AB-covariant and level-zero tests,
T W : the class of AB-local W -invariant tests.

The inclusion relations of these classes are not totally ordered. For example, from the
locality,

T u,2, T V ⊂ T U , T W ⊂ T G

while from the unitary invariance,

T U ⊂ T u,2, T W ⊂ T V ⊂ T G.

On the other hand, the type 2 error probabilities of the optimal tests are totally ordered:

β(σ⊗2, T G) < β(σ⊗2, T W ) < β(σ⊗2, T U ) < β(σ⊗2, T V ) < β(σ⊗2, T u,2)

in a set of states close to
∣∣φ0

AB

〉
. In figure 1, the type 2 error probabilities β are plotted with

respect to θ = x00 = 〈
φ0

AB

∣∣σ ∣∣φ0
AB

〉
of T u,2 (the highest solid line), T U (the second highest solid
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Figure 1. The type 2 error probabilities β with respect to θ = x00 = 〈φ0
AB |σ |φ0

AB 〉 of T u,2 (the
highest solid line), T U (the second highest solid line), T W (the third highest solid line), T G (the
thick line) and T V (the dashed line) where xij are the same for 1 � i, j � 3.

line), T W (the third highest solid line), T G (the thick line) and T V (the dashed line) where xij

are the same for 1 � i, j � 3. If xij = 0 for i �= j , then the line of T V coincides with that of
T U and there is no change for other tests. In such a way, the framework of hypothesis testing
clarifies the hierarchy of requirements for measurements from the viewpoint of performance
of optimal tests.

We have considered hypothesis testing for entanglement under locality and invariance
conditions. We have derived optimal tests for some settings. In our derivations of UMP tests,
the separability of LOCC measurements played an important role. The UMP U-invariant and
level-zero test T U were shown to have the asymptotically same performance as T G. The PPT
approach of Virmani and Plenio [27] was also useful to obtain UMP tests.

We may have some problems remained. One problem is how we can develop our results
for general level α (0 < α < 1), sample size n and dimension d. Another is what test is an
appropriate test for

H0 : θ � c0 versus H1 : θ < c0, H0 : θ � c0 versus H1 : θ > c0 (46)

for a constant c0 very close to one. Indeed, if H0 of (46) is rejected by a test with small
level, then the statement ‘The state is very close to

∣∣φ0
AB

〉
’ will be strongly supported. Hence,

it is significant to treat the hypothesis of the form (46). This problem will be treated in a
forthcoming paper [12]. It is also a problem remained to remove technical assumptions such
as (32) in section 5.2.
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Appendix. Lemmas for theorems 4, 5

Lemma 1 (For theorem 4). If 1 − θ is small enough, then the power of the test in theorem 4
is uniformly maximized if (34) is simultaneously maximized.
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Proof. Since K±
i is spanned by xij and L±

i is spanned by xi,0 and x0,j for 1 � i, j � 3, it
holds that

Tr
(
σ⊗2K+

i

) = O((1 − θ)2) and Tr
(
σ⊗2L+

i

) = O(1 − θ) (A.1)

as θ → 1 − 0, except for L+
1 . By (23) and (24),

Tr
(
σ⊗2

(
3K+

5 − 5K−
3

)) = (x11 − x22)
2 + (x22 − x33)

2 + (x33 − x11)
2

+ 4(Im x12)
2 + 4(Im x23)

2 + 4(Im x31)
2 + 6(|x12|2 + |x23|2 + |x31|2)

� 0. (A.2)

Define column vectors v and w by

v = (
Tr
(
σ⊗2K+

5

)
Tr
(
σ⊗2L+

3

)
Tr
(
σ⊗2K+

1

)
Tr
(
σ⊗2K−

3

)
Tr
(
σ⊗2L−

3

) )T
,

w = (w1 w2 w3 w4 w5 )T ,

and define a 5 × 5 matrix M by

M = 1

15




3 −9 0 0 0
0 15 0 0 0
0 0 15 0 0

−5 0 −5 5 −15
0 0 0 0 15


 as the inverse of




5 3 0 0 0
0 1 0 0 0
0 0 1 0 0
5 3 1 3 3
0 0 0 0 1


 .

Let v′ = MT · v and w′ = M−1 · w. Each quantity in (34) is an entry of w′, and the power
of the test in theorem 4 is given as vT · w = v′T · w′. When each entry of v′ is non-negative,
the maximum of v′T · w′ is attained by maximizing w′. From (33), (A.1) and (A.2), there is
θ0 such that v′ is non-negative. Therefore, if (34) is maximized, then the power of the test is
maximized. �

Let ptC(X) be the partial transpose of an operator X on a subsystem C, for example,
ptA1⊗B1

(X) is given by

ptA2B2
(X) =

∑
0�i,j,k,l�1

IA1B1 ⊗ |i〉A2 |j 〉B2〈k|A2〈l|B2XIA1B1 ⊗ |i〉A2 |j 〉B2〈k|A2〈l|B2 ,

where IA2B2 is the identity on A2 ⊗ B2.

Lemma 2 (For theorem 4). If T = {T0, T1} is samplewise-local then w2 = w5.

Proof. The samplewise-locality of T implies that ptA2⊗B2
(T1) is positive, in particular,

R =
(〈u|ptA2⊗B2

(T1)|u〉 〈u|ptA2⊗B2
(T1)|v〉

〈v|ptA2⊗B2
(T1)|u〉 〈v|ptA2⊗B2

(T1)|v〉
)

=
(

0 − 5
√−1
6
√

3
(w2 − w5)

5
√−1
6
√

3
(w2 − w5)

17w1+9w3+w4
27

)

should be positive where

|u〉 = ∣∣φ0
AB

〉
1

∣∣φ0
AB

〉
2, |v〉 = 5

∣∣φ1
AB

〉
1

∣∣φ1
AB

〉
2 − ∣∣φ2

AB

〉
1

∣∣φ2
AB

〉
2 − ∣∣φ3

AB

〉
1

∣∣φ3
AB

〉
2

3
√

3
.

Since det(R) = −25/108(w2 − w5)
2 � 0 holds, w2 = w5. �

Lemma 3 (For theorem 4). If T = {T0, T1} is AB-local then

0 � 10w1 + 6w2 − w3

12
� 1, (A.3)
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0 � w3 + 2(w4 + w5)

4
� 1. (A.4)

Proof. The AB-locality of T implies that ptB1⊗B2
(T0) = ptB1⊗B2

(I − T1) is positive. The first
result (A.3) is obtained since

1

2

(〈
0A1 1B1 0A2 1B2

∣∣ − 〈
1A1 0B1 1A2 0B2

∣∣)ptB1⊗B2
(T1)

(∣∣0A1 1B1 0A2 1B2

〉 − ∣∣1A1 0B1 1A2 0B2

〉)
= 10w1 + 6w2 − w3

12
.

The second result (A.4) is obtained since

1

2

(〈
0A1 0B1 0A2 0B2

∣∣ − 〈
1A1 1B1 1A2 1B2

∣∣)ptB1⊗B2
(T1)

(∣∣0A1 0B1 0A2 0B2

〉 − ∣∣1A1 1B1 1A2 1B2

〉)
= w3 + 2(w4 + w5)

4
.

�

Lemma 4 (For theorem 4). If T = {T0, T1} is AB-local and samplewise local then
3
4 (w2 + w5) � 1.

Proof. The AB-locality and samplewise locality of T implies that ptB2
(T0) = ptB2

(I − T1) is
positive. Since〈

φ0
AB

∣∣
1

〈
φ2

AB

∣∣
2ptB2

(T1)
∣∣φ0

AB

〉
1|φ2

AB〉2 = 3
4 (w2 + w5),

we have the result. �

Lemma 5 (For theorem 5). In theorem 5, the type 2 error probability of the test is uniformly
minimized if 3w1 + 2w2 and w2 are simultaneously minimized.

Proof. Define column vectors v and w by

v = (
Tr
(
σ⊗2

(
K+

5 + K+
1 + K−

3

))
Tr
(
σ⊗2

(
L+

3 + L−
3

)) )T
,

w = (w1 w2 )T ,

and define a 2 × 2 matrix M by

M = 1

3

(
1 −2
0 3

)
as the inverse of

(
3 2
0 1

)
.

Let v′ = MT · v and w′ = M−1 · w. The power of the test in theorem 5 is given as
vT · w = v′T · w′. If each entry of v′ is non-negative, the maximum of v′T · w′ is attained
by maximizing w′. From (42), v′ is non-negative. Therefore, if 3w1 + 2w2 and w2 are
simultaneously minimized, the type 2 error probability is minimized. �
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